An algorithm for the split-feasibility problems with application to the split-equality problem
نویسندگان
چکیده
منابع مشابه
An algorithm for the split-feasibility problems with application to the split-equality problem
In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.
متن کاملExtensions of the CQ Algorithm for the Split Feasibility and Split Equality Problems∗
The convex feasibility problem (CFP) is to find a member of the intersection of finitely many closed convex sets in Euclidean space. When the intersection is empty, one can minimize a proximity function to obtain an approximate solution to the problem. The split feasibility problem (SFP) and the split equality problem (SEP) are generalizations of the CFP. The approximate SFP (ASFP) and approxim...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Modified Algorithm for Solving the Split Feasibility Problem
In this paper a modified algorithm for solving the split feasibility problem (SFP) is presented. This algorithm uses the generalized Armijo line search in computing predictor step size and gives a correction step rule in the iterative process, which makes an accelerated convergence to the solution of SFP. Meanwhile, it needs not to compute the matrix inverses and the large eigenvalue of the mat...
متن کاملRegularized Methods for the Split Feasibility Problem
and Applied Analysis 3 However, 1.8 is, in general, ill posed. So regularization is needed. We consider Tikhonov’s regularization min x∈C fα : 1 2 ∥I − PQ ) Ax ∥∥2 1 2 α‖x‖, 1.9 where α > 0 is the regularization parameter. We can compute the gradient ∇fα of fα as ∇fα ∇f x αI A∗ ( I − PQ ) A αI. 1.10 Define a Picard iterates x n 1 PC ( I − γA∗I − PQ ) A αI )) x n 1.11 Xu 20 shown that if the SFP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2017
ISSN: 1029-242X
DOI: 10.1186/s13660-017-1567-9